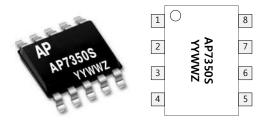


High Power LED Driver IC

DESCRIPTION

The AP7350S is an instant On/Off LED drive IC for high flux LED and adjustable constant-current source, easily driving loads 50mA up to 1A through an external resistor. The SHDN of the AP7350S permits LED brightness regulation by pulse width modulation (PWM). The LED brightness can be regulated via duty cycle. And if SHDN sets high, the AP7350S will be in sleep mode. the SHDN pin also can be used as an enable input. This integration technology eliminates individual components by combining them into a small package, which results in a significant reduction of both system cost and board space.


FEATURES

- Dimming control or Sleep mode by MiCOM signal
- LED drive current adjustable through external resistor (Max 1A under PWM)
- Very Simple Circuit Design and Very low cost design
- Halogen-Free Package is Available

Applications

- Backlighting LED Drive.
- High flux LED Drive
- Industrial Lamp Indicators
- Constant current source
- Automotive lighting

Pin Description & Marking Information

Package: SOP-8

Pin No	Symbol	Description
1	VCC	Power Supply
2	SHDN Disable On/Off	
3	GND	Ground
4	N.C	No connection
5	N.C No connection	
6	N.C No connection	
7	OUT	Open Collector Output
8	FB Feedback / 0.2V Reference	

Ordering Information

Part No	Package	Packing	Finish	Halogen	REEL unit	Remark
AP7350S	SOP-8	Tape & Reel	Sn	Free	2,500	MOQ 25Kp

Maximum Ratings

Characteristic	Symbol	Rating	Units
Power Supply Voltage	VCC(MAX)	25	V
Output Voltage	VOUT(MAX)	25	V
Output Sink Current	IOUT(MAX)	1	Α
Power Dissipation	P _D ¹⁾	0.8	w
Thermal Resistance Junction-Ambient	R тн(J-A) ¹⁾	156.3	°C/W
Operating Temperature Range	Topr	-40 ~ 85	°C
Storage Temperature Range	Тѕтс	-55 ~ 125	°C

Note

Recommended operating conditions

Characteristic	C. mah al	Rat	Units		
Characteristic	Symbol	Min.	Max.	Oilles	
Power Supply Voltage	VCC(MAX)	3	24	V	
Output Voltage	Vout(max)	1.5	Vcc	V	
Output Sink Current	IOUT(MAX)	-	1	Α	
Shut Down Voltage	SHDN	-0.3	Vcc	V	

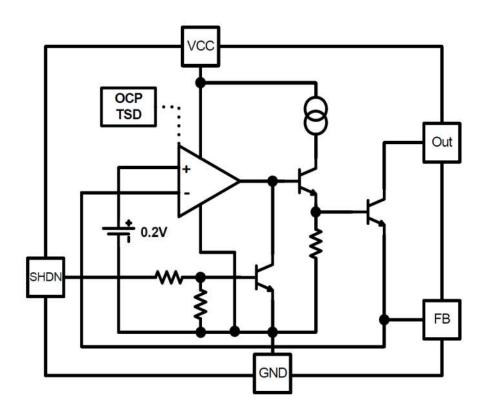
¹⁾ Mounted on a glass epoxy circuit board of 50x50mm Pad dimension of 50mm²

Electrical Characteristics

Test Conditions: Ta = 25°C, unless otherwise specified

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
IQ Maximum	IQ	Vcc = 3~24V, Iout = 20mA, Vout = open	-	18	24	mA
Leak Current	Ileak	Vcc = 5V, Vout = 24V	-	0.1	1	uA
Feedback Voltage	VFB	Vcc = 5V, Iout = 10mA	192	200	208	mV
Dropout Voltage	Vdrop	Vcc = 5V, Iout = 500mA	-	0.7	1.5	V
Line Regulation	ΔVFB1	Vcc = 3~24V, Iout = 10mA	-	2	10	mV
Load Regulation	ΔVFB2	Vcc = 5V, Iout = 10mA, Vout = Vcc	-	3	25	mV
SHDN Voltage ON	Vdis on	Vcc = 5V, Iout = 10mA, Vout = Vcc	1.5	-	-	V
SHDN Voltage Off	Vdis off	Vcc = 5V, Iout = 10mA	-	-	0.5	V
SHDN Pin Current	Idis	Vcc = 5V, SHDN = 5V	230	430	630	uA
Short Circuit Current	Isc	Rfb = 0Ω	-	1.9	-	Α
Thermal Shutdown	TTSD	-	-	160	-	°C

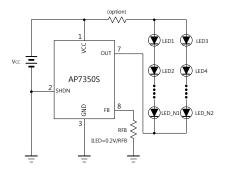
Notes


1. These parameters, although guaranteed, are not 100% tested in production.

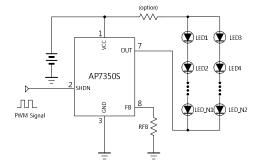
Switching Characteristics

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Propagation Delay Time ("L" to "H")	tpLH	V _{cc} = 3.5V V _{SHDN} .H = 5V	0.6	1	-	μs
Propagation Delay Time ("H" to "L")	tpHL	$V_{SHDN}.L = GND$ $RFB = 0.2\Omega$	0.2	1	-	μs
Pulse width	tw	(IOUT = 1A) $ROUT = 2Ω$	1			μs
Output Rise Time (turn off)	tr	CL = 10pF	0.5	1	-	μs
Output Fall Time (turn on)	tf		0.1	0.2	-	μs

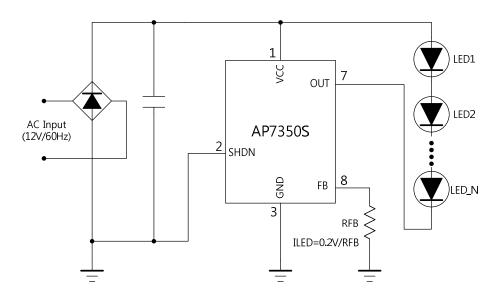
Internal Block Diagram



Design Consideration


- 1) Calculation for RFB
- RFB = 0.2V / ILED
- 2) Calculation for Vdrop
- Vdrop = VCC VLED
- 3) Calculation for Power Dissipation on the AP7350S
- $-PD1 = (Vdrop VFB) \times ILED$
- $-PD2 = VCC \times IQ$
- -PD(total) = PD1 + PD2
- 4) If does not use an Dimming function, connect SHDN Pin with the ground.

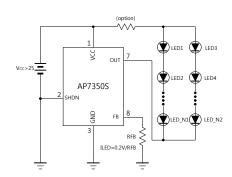
Typical Applications

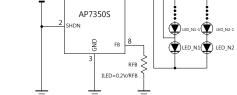

<APP1. Constant Current LED Driver Circuit>

<APP2. PWM Dimming LED Driver Circuit>

X Caution

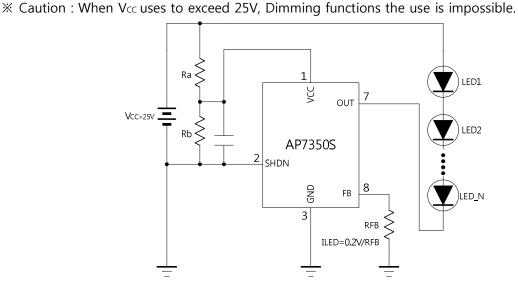
In the case of high current application, we recommend to control the PWM using by \overline{SHDN} . If user cannot uses the PWM control, the application must be limited in $P_D(=V_{DROP}\times I_{LED})$. So, in this case we recommend to minimize V_{DROP} or I_{LED} . (See page 9)


<APP3. Vac Landscape Lightning Application Circuit>


LED1 D LED3

LED2 (V) LED4

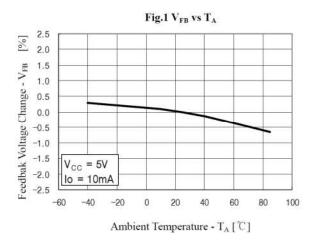
Typical Applications

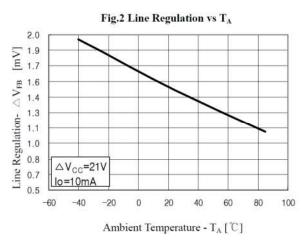


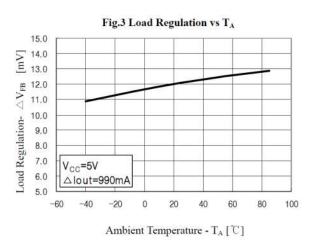
<APP4. High Voltage Operation of AP7305Q (1)>

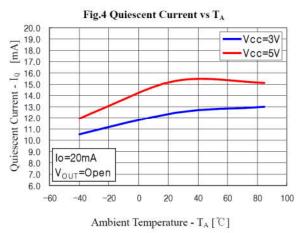
<APP5. High Voltage Operation of AP7305Q (2)>

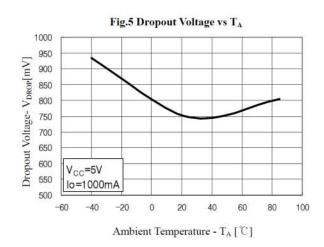
For operation in excess of AP7350S specified maximum voltage (Vcc & Vout) of 25V, one way is to connect a sufficient number of LEDs between the power supply voltage and the DC input of the Vcc&Vout such that the voltage seen at pin(Vcc & Vout) is less than 25V. That is to say, use additional LEDs to drop the voltage fed to the AP7350S below its maximum rating, in the usual way. Refer to **APP4,5** Note that the exact number of diodes required will depend on the supply voltage Vcc and output voltage Vout, the voltage drops across the particular LEDs being used. (Red, Blue and White LEDs have different forward voltage drop.)

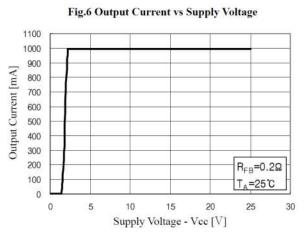

Use enough LEDs such that voltage at pin(Vcc & Vout) of AP7350S is < 25V.

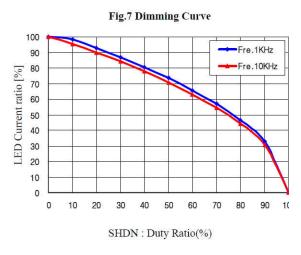



<APP6. Power Supply Where Separates Operation of AP7350S>




Electrical Characteristic Curves





Electrical Characteristic Curves

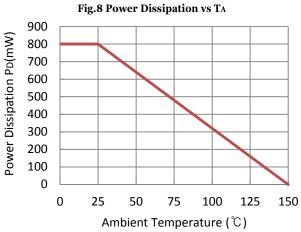
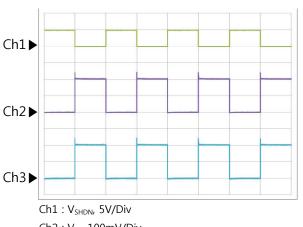
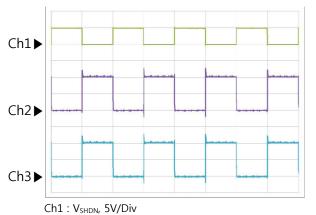
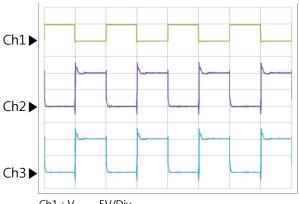


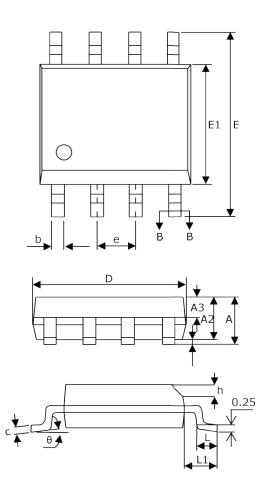
Fig.9 Dimming Waveform [1kHz]


Fig.10 Dimming Waveform [10kHz]

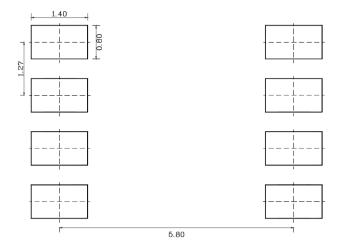
Ch1: V_{SHDN} , 5V/DivCh2: V_{FB} , 100mV/DivCh3: I_{FB} , 5mA/Div

Ch2: V_{FB}, 100mV/Div Ch3: I_{FB}, 5mA/Div


Fig.11 Dimming Waveform [50kHz]

Ch1 : V_{SHDN} , 5V/Div Ch2 : V_{FB} , 100mV/Div Ch3 : I_{FB} , 5mA/Div

Package Dimension



Unit: mm

SOP-8L unit : mm				
DIM	MIN	MAX		
А	-	_	1.75	
A1	0.10		0.225	
A2	1.30	1.40	1.50	
А3	0.60	0.65	0.70	
D	4.70	5.10		
Е	5.80	6.20		
E1	3.70 3.90 4.10			
е	1.27BSC			
h	0.25	_	0.50	
L	0.50 _ 0.80			
L1	1.05BSC			
θ	0	_	8°	
L/F	80*80	80*80 90*90 95*13		

Recommend PCB solder land

Unit: mm

Revision History

No	Date	Contents
00	2015-12-30	Initial Brief Datasheet Release
01	2016-04-01	Addition switching characteristics

http://www.apsemi.com

IMPORTANT NOTICE

AP Semiconductor co, Ltd reserves the right to make changes without further notice to any products or specifications herein. AP Semiconductor co, Ltd does not assume any responsibility for use of any its products for any particular purpose, nor does AP Semiconductor co, Ltd assume any liability arising out of the application or use of any its products or circuits. AP Semiconductor co, Ltd does not convey any license under its patent rights or other rights nor the rights of others.

AP Semiconductor Co., Ltd

Contact. Tel 82.70.4693.2299 FAX 82.70.4000.4009

E-mail: sales@apsemi.com

© 2016 AP semiconductor Co., Ltd. – Printed in KOREA – All Rights Reserved.